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Stark Shift Contribution to Field Statistics in a 
Generalized Jaynes -Cummings  Model 
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Received Janua~ 28, 1995 

The nonlinear and multiphoton interaction between a single two-level atom and 
two modes of radiation is studied in a generalized Jaynes-Cummings model. An 
intensity-dependent level shift is considered. The time evolution operator is 
obtained. The detuning has a photon number dependence. Different statistical 
aspects pertaining to either the atom or the fields are calculated. The dipole 
moment, the dipole-dipole correlation function, as well as the transient spectrum 
are obtained. 

1. INTR ODUC TION 

The interaction of a single two-level atom and the radiation field [Jaynes 
and Cummings (1963) model, JCM] has been studied extensively (Cummings, 
1965; Eberly et  al., 1980; Knight and Radmore, 1982a,b; Narozhny et  al.,  

1981; Yoo and Eberly, 1985; Tavis and Cummings, 1969). Various models 
have been used to discuss many different phenomena (Allen and Eberly, 
1975; Sargent et  al.,  1974; Shumovsky et  al.,  1985). A number of generalized 
JCM models have been investigated (Abdalla et  al.,  1990, 1991; Abdel-Hafez 
et  al. ,  1987; Obada and Abdel-Hafez, 1986; Ackerhalt and Rzazeuski, 1975; 
Buck and Sukumar, 1981, 1984; Sukumar and Buck, 1984; Kosierowski, 
1986; Kosierowski and Shumovsky, 1987; Kochetov, 1987; Singh, 1982). 

In this paper, a generalized JCM is studied; the interaction is multiphoton 
and nonlinear. Also, the Stark shift is considered. The constants of motion 
are obtained. The time evolution operator is calculated and used to compute 
the density matrix. Consequently, different distributions have been assumed 
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for the initial photon states. We note that the detuning parameter depends on 
the photon numbers. Finally, the transient spectrum is obtained. 

2. THE TIME E V O L U T I O N  O P E R A T O R  

We consider the system of a single two-level atom interacting with two 
modes of radiation, where the interaction is multiphoton and nonlinear. This 
model differs from those considered before (Abdalla et  al., 1991) by the 
addition of the term E 2 o94j~jj, which represents an intensity-dependent level 
shift (Stark shift). 

The Hamiltonian that describes this model in the rotating wave approxi- 
mation (RWA) is given by 

2 2 2 

= E w:j + g a3. + g 
1 1 1 

+ X(S,a(a~-)K2a{ ' + (a~-)k'ak2eS21) (2.1) 

where wj are the field frequencies and 11; the level energies, while t~j + and 
d i are the boson operators for the quantized field, which obey the commuta- 
tion relation 

[ai, a + ] = 8ij (2.2) 

The Sij operators are the generators of the group U(2). They describe the 
atom and satisfy 

[SCj, &,J = S,-,Skj - SejS,, (2.3) 

we note that the original Jaynes-Cummings (1963) model is given if we put 
c 9 = 0, k2 = 0, and kl = 1 and the generalized model obtained above (Abdalla 
et  al., 1991) has aj = 0, i.e., this model is a more general one. Here k is 
the coupling constant. 

By using the Heisenberg equation of motion for the operators 4j = 
af  aj and Sjj., we can deduce the following constants of  motion: 

l A 
]gl = 41 "}- 2 k l ( S l l  - S22) 

1 
/~r2 ~--- 42 - -  ~k2(Sn - $22) 

(2.4a) 

(2.4b) 

Thus, the Hamiltonian (2.1) becomes 
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2( 1( 1 1 ) 
I~t = ~1 Wj -t- ~Ol.j "{- ~ ~"~1 -'}- a 2  -- ~ o/.lkl - ~ ot2k2 I-4- C 

where 

(2.5) 

= 0 + D (2.6a) 

b = h(S,z(fii~)x2a~ ' + (ai~)k,a~22s2~) (2.6b) 

20 =/)~$1, -/~2S22 (2.6c) 

with the new detuning parameter ~- which depends on photon numbers 
as follows: 

1 1 ( 1 ) ( 1 )  
/~1 = ~ -- 2 (~lkl + 2 o~2k2 -~- o~1 /'/1 + 2 kl - 0/-2 n2 - ~ k2 (2.7a)  

( 1 ) ( 1 )  
/~2= A - ~ c q k l + ~ O t 2 k 2 + a l  n l - ~ k t  - a2 n2 + ~ k 2  (2.7b) 

with 

A = ~1  -- ~'~2 nt- k2w2 - kl  W1 (2.8) 

If we put aj = 0, we have/)j  = A, which is the usual detuning parameter. 
We note that the/)j  operators satisfy the following relation: 

/)1 d~'(~-) k2 = a]'(6~)~2/~2 (2.9) 

We can show that 

0D + D0 = 0 (2.10) 

It is easy to show that [C, be] = 0 and hence each of them commutes with 
/), i.e., N and C are constants of motion. 

Now we consider the time evolution operator U(t), which is defined 
as follows: 

U(t) = exp{- i i l t}  

= exp - i  (wj + 

• exp{idt} 

1 ,)} 
"4- ~-~2 -- ~ Otlkl - ~ a2k2 t 

(2.11) 
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taking into account the fact that [C, N] = 0. 
After some manipulations, we can show that the time evolution operator 

is given by 

{1( 1 ,)} 
U(t) = exp - 2  ~1 + ,Q2 - ~ eqk, - ~ o/.2k 2 t 

(2.12) 

where 

( 1)( 1 ) (  1 ) ( , )  
Zl = wl + ~ cq n~ + ~ k~ + Wz+~C~ 2 n2 - ~ k2 

z~= Wl+~l n,-~k, + w~+~  , ~ + ~  

(2.13a) 

(2.13b) 

and 

exp(-i~?t) 

i/~1 sin b i t  ih sin bi t  (fi~-)k2~]l 
COS bl  t 2 I~l bl 

. sin b2t - i h  ~ (FZ~)klfi~ 2 COS ~2t + i/~2 sin bzt 
1"2 2 b2 

(2.13c) 

with 

4 aj! ( ~ , - k , ) !  4 
(2.14) 

The/x; are the generalized Rabi frequencies in this case and ~j are the Rabi 
frequencies for zero detuning. 

It is easy to show that U(t)U+(t) = I. Once the time evolution operator 
is known, the dynamical behavior of any operator can be determined through 
the relation 

O(t) = (J+(t)O(O)U(t) (2.15) 

where 0(0) is the initial value operator. 
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3. SOME STATISTICAL ASPECTS 

For the statistical averages we have 

(O(t)) = tr[f(t)O(0)] (3.1) 

where the density matrix is 

f(t) = /~/(t)p(0)0+(t) (3.2) 

and the probability distribution function is obtained from the expectation 
value of the field density matrix 

fie(t) = TrAf(t) (3.3) 

between the photon number states. 
Here we assume that at t = 0, the density matrix takes the following form: 

~(0) = ~A(0) | ~F(0) (3.4) 

When the atom is prepared to be in its pure ground state, the initial 
value for the density matrix 15(0) takes the form 

~gr(0) = PvSll(0) (3.5a) 

while the density matrix ~ex(0), when the atom is prepared to be in its pure 
excited state, is given by 

Oex(0) = ~FS22(0) (3.5b) 

From the density matrix for the field at any time t > 0 given by (3.3), the 
probability distribution function of finding ni photons in the mode i at t > 
0 as mentioned above is given by 

P(n~, n2, t) = (nt,  n2[fF(t)[n~, n2) (3.6) 

By using equations (3.1)-(3.6) we can obtain some statistical quantities. 

3.1. The Atom in Its Ground State 

The field density matrix is given generally by 

fv(O) = ~ ,  ]m, m2)(m'l, m~] t~ , , ' Pmlm2,mlm2 (3.7) 
m l,m2 

m].,,~ 

Making use of the above field density matrix (3.7) in the expression for the 
density matrix with the ground state (3.5), we obtain the expression for the 
probability distribution function 
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s1 
pgr(nln2, t) = vl P(nl + kl, n2 -- k2) 

+ cos a Ix2t + ~ sin 2 IXzt P(nb na) (3.8) 

Once the probability distribution function is known, the expectation value 
for the number of photons can be obtained through the relations 

(Fti(t)) = ~ niP(n1, n2, t) (3.9) 
ni 

Thus we have: 

sin2p.2 t 
(hi(t)) gr = -nl - kl ~ v2 - - P ( n l ,  n2) (3.10a) ., ~2 

sinep'2t P(nl, n2) (/~2(t)) gr = ~2 § k2 . 112 ~s (3.lOb) 

By using the constant of motion operators (2.4) we have 

sin2p~2------~t P(nl, n2) (3.1 la) 

(S22(t))g~ = ~ c~ + 4p.----~ sin2p'2t P(nt, n2) (3.11b) 

It is easy to show that ~2 (Sj~(t)) = I. We can also write the expectation 
value for the operator ~Sl(d~-)s2; for the ground state we find 

1 1 

x {Icos tlx2(nl + Sl, n2) - 

iE2(nl + SI, n2) 
2~2(nl + SI, n2) 

sin tp,2(nl + SI, n2)] 

• cos ttx2(nl, n2 + Sz) + 
iEa(nl, n2 + $2) 
2lx2(nt, n2 + $2) 

sin tlx2(nl, n2 + Sz) ] 

sin tp~z(nt + S~, n2) sin tp~2(nl, n2~ +__82)~ + v2(nl, n2 + S2) 
la,2(nl + SI, n2) p,2(nl, n2 + $2) J 
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• Pnl+S~.n2;nl.,,:+S2 (3.12) 

where P~ln2mv~2 = (nt, n21 pr(0) I ml, me). 
Finally, the expectation value for the operators ,,~'~s~s~,,2- is of the form 

(hlS'fis2) ~ = nS'n s2 + ~ [(n, -- k,)S'(n2 + k2) & - n,S'n2-]s~ 
ni 

sin__.~2 P~2__jt 
• v2 P.:2 P(nln2) (3.13) 

where the bar denotes the initial value for the average. 

3.2. The  A t o m  in Its Excited State 

By using the field density matrix (3.7) in the expression for the density 
matrix of the upper state (3.5b), we obtain the probability distribution function 

P~X(nl, n2, t) = cos 2 ~ t  + 41x---~ sin2 ~Xlt P(nl, n2) 

sin---~-2 Ix2-~t P(nl - kl, n2 + k2) (3.14) + v? lx~ 

We can therefore obtain the expectation value (fii(O) ex through the relation 
(3.9), 

+ kl ~ [cos2~lt + E~ sin21xtt] (~l(t)) ex= nl ~ ]P(nl, n2) (3.15a) 

sin2~lt P(nl, n2) (3.15b) (fi2(t)) ex = n 2 -  k2 . vl Ix ~ 

Using (2.4), we obtain the formulas for the occupation numbers in the atomic 
levels as 

[ 41x---~lE~ ] (S~l(t)) ex = ~ cosZtxd + sinZtxlt P(nl, n2) (3.16a) 

{S2z(t)) ~ = ~ vl ~ P(nl, n2) (3.16b) 
n i ~1"1 

Also we can show that ]~ (Sii(t)) = I. 
However, the expectation value for (as~(~-)s2) is given by 
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X {[costp~l(nl +$1, n2)- 
] iEl(nl + S1, /'/2) sin tlxl(nl + $1, n2)|  

2p, l(nl + $1, n2) J 

l- iEl(nl, n2 + $2) X /cos  tp~l(nt, n 2 + $2) + 
/ 2p, l(nl, n2 + $2) 

sin t~l(nl ,  n2 + $2)] 

+ vl(n~ + S1, n2) sin tl~l(nl + St, n2) sin t~l(nl ,  n2 + Sz)'~ 
Ixl(nl + $1, n2) txl(nl, nz + 52) J 

• P.l+St,.z,.l,.2+S2 (3.17) 

Finally, we have 

(/~S1~$2) ex ~--- /,1SIF/S2 + ~ [(F/l "q'- kl)Sl(nl - k2)$2 - nS ,nS2]  

nl 

X vl ~ P(nl n2) (3.18) 

We note that in equation (3.17), if we take the complex conjugate and 
interchange the subscripts 1 and 2, we can easily obtain (3.12). Also by 
interchanging the subscripts 1 and 2, equations (3.10) and (3.11) become 
(3.15) and (3.16), respectively. 

The cross correlation between modes 1 and 2 can be written as 

Acros~ = (nl(t)n2(t)) - (nl(t))(n2(t)) (3.19) 

The two modes are said to be correlated if Acros S is positive and anticorrel- 
ated if Acros s is negative. 

When we use the appropriate quantities of (3.17) and (3.12) and the 
expression for the second-order correlation function 

glZ)(t) = (n~(t)) - (ni(t)) 
(ni(t))2 (3.20) 

we can discuss the bunching and antibunching. Also, we can obtain the dipole 
moment operators as follows: 
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and 

] 112 
(~12(t))gr = iXei(Zi_Z2)t ~ i (nl + kO!(nZn~! nz! + k2)! 

X [COS ttx2(nb n2 + k2) 

+ iE2(nl, n2 -F k2) 
2~2(nb n2 + k2) sin tD2(nl, n2 + k2) 1 

sin t~l(nl, n2 4- k2) 
X Ixj(nl, n2 + k2) Pnl,n2+k2,nl+kbn2 

] 1/2 
(~12(t))ex = _ihei(Zl_Z2)t ~, (hi + kl)!(nznl! rt2! + k2)! 

• Icos tpq(nl + kl, n2) 

sin ttx~(nt + kl, n2) 1 
iEl(nl + kl, ~2) 

+ 2txt(nt + kt, n2) 

sin ttxz(nl + kl, n2) 
X ~2(nl + kb n2) P.j,.2+k2,.l+~l,n2 

While the dipole-dipole correlation functions take the form 

(Sl2(t)S21(t')) gr 

sin Ix2t sin Ix2t' [-v~ sin Ix~t sin tx~t' 
2 • 

+ c o s l x 2 t + - - s i n t x ~ t  C O S l ~ ; t ' - - -  
2tx; 2Ix; 

sin tx~t')] 

• P[nb n2] 

with 

n f ( 1, n2) = f (nl  - kb n2 + k2) 

and 

(3.21) 

(3.22) 

(3.23) 
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(S12(t)S21(t')} ex 

t,} 
)( • , cos ixlt + 21x~iE~ sin ix~t cos pqt' - 2 ~  

• cos b~2t + ~ sin IX2t cos iXzt ' - 21x2 sm ~2t' 

sin ~2t sin ix2t']p[n,, 
+ v2 ~ /'/2] 

we note that equations (3.8)-(3.24) are obtained above if we put/~j 
i.e., %- = 0. 

(3.24) 

= A,  

3.3. The Spectrum 

The emission spectrum is given by the Fourier transformation of the 
dipole-dipole correlation function weighted by the detector response function 

(t~[S, 2(t, )$21 (t2) ItS) (3.25) 

with 

0 
ItS} = (n,, n2ta,, c~2) cos ~ In,, 

e ) + e -i* sin ~ Inl, n2, 2) 

n2, 1) 

(3.26) 

The transient spectrum is given through the relation (Agarwal and Puff, 
1986; Eberly and Wodkiewicz, 1977; Zaheer and Zubairy, 1989) 

S(w) = 2F dtl dt2 e -(F-iw)(r-tl)-(F+iw)(r-t2) 

• {~lSL2(t,)S2,(t2)l~) (3.27) 

where T is the interaction time and 1/F is the detector's response time. 
After some manipulations, we obtain the following formula for the 

transient spectrum: 
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where 

8 
f S(w) 

0 [.--~2 LL* + MM*] 

+ (oq, ,~21,,, + < ,  ,,2 + k~>(,,~, ,,21,~,, ,~2) 

0 0 [ - v e ~ / - ~ I L N , _ V / - ~ I M K , I  X e -i+ sin ~ cos ~ Ix,zix~ IX~ 

0 0 
+ (a,, a2[n,, n2)(n, + k,, n2 + k210q, az)e i+ sin ~ cos 

x L Ix,2ix', 

+ I(~,, ~21~, + ~,, n~ + '~2}1" 

0 r v,vz NN* + ~ k k * ]  
X sinZ~ L~n" '2.2l.~n ixn J 

F(iX,, Ix;) = 

L? = 1 + - - ,  g X= z 2 -  z,, 
2tx i 

r 
iX', = i X , ,  IX', = iX2 

(3.28) 

L = -E{F(IX. ,  i x') - E T F ( - I X . ,  IX,;) 

+ E{F(iX., - IX')  + E[F(-IX' , ,  -ix',) 

M = E{E~F(IX,,, IX',,) + E1E~F(-IX' , ,  Ix',,) 

+ E?E2F(IXn, - IX ' )  + E?E~F(- IX ' , ,  - IX')  

N = F(iX',, ix'.) - F(-IX',, Ix') - FOx',, -Ix',) + F(-IX',, -IX',) 

K = -E~F(IXn, Ixrn) + gfF(--Ixn, I-t/n) 

- -  E{F(IX., - iX ' )  + E { F ( - i X . ,  -IX'.) 

exp{i[ix,, + Ix" - (w - ~ ) ]T}  - e x p { - F T }  
(3.29a)  

F + i[ix. + IX" - ( W -  s 

(3.29b) 
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Note that if we take kl = 1, k2 = 0, aj = 0, and A = 0 we obtain the 
spectrum obtained earlier (Zaheer and Zubairy, 1989). 

4. C O N C L U S I O N S  

In this paper, we considered a generalized multiphoton nonlinear J aynes -  
Cummings  model (JCM). We further assumed an intensity-dependent level 
shift. The detuning parameter in this case differed from the one obtained 
before since it depends on the photon number  operator. We solved the model 
exactly and found the time evolution operator, and hence calculated the 
probability distribution functions and some statistical aspects for the initial 
photon states. The dipole moment  as well as the d ipole-d ipole  correlation 
functions were obtained. We obtained the general form of  the transient spec- 
trum established earlier as a special case. It is concluded that the former 
studies can be considered here; for example, by putting kl = 1, k2 = 0, and 
09 = 0 we get the original JCM; by putting oLj = 0 we get the model  studied 
by Abdalla et al. (1990, 1991). The model of  Sukumar and Buck  (1984) is 
obtained by putting k2 = 0. Therefore, this model  represents a more  general- 
ized JCM than studied before. 
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